86 research outputs found

    Combined SIMS-SPM Instrument For High Sensitivity And High Resolution Elemental 3D Analysis

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201

    Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy

    Get PDF
    Few layer graphene and graphite are simultaneously grown on a similar to 100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(pi) hybridization. (C) 2016 AIP Publishing LLC

    Dopant imaging of power semiconductor device cross sections

    Get PDF
    Several Scanning Probe Microscopy (SPM) methods allow to image dopant profiles in a range from 10(14) cm(-3) to 10(19) cm(-3) on semiconducting samples. In our work we present Scanning Capacitance Force Microscopy (SCFM) and Kelvin Probe Force Microscopy (KPFM) experiments performed on cross sections of silicon (Si) and silicon carbide (SiC) power devices and epitaxially grown calibration layers. The contact potential difference (CPD) shows under illumination a reduced influence on surface defect states. In addition results from numerical simulation of these microscope methods are discussed. (C) 2016 Elsevier B.V. All rights reserved

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus

    Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia.

    Get PDF
    Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress

    Phase noise induced due to amplitude fluctuations in dynamic force microscopy

    No full text
    In dynamic force microscopy, the force sensor is driven on its resonance frequency and the amplitude of the cantilever is sustained at a constant value. The amplitude typically ranges between 0.1 and 30 nm. If a large amplitude is set, the cantilever tip senses both long-range and short-range interaction forces provided that the tip is close to the sample surface. The short-range interactions are decisive for the atomic contrast in atomic force microscopy (AFM) images. They can be separated from the long-range interactions by setting an amplitude which encompasses the typical range of the interaction force, i.e., the subangstrom regime for van der Waals contribution. It is distinctive for cantilevers operated at small driving amplitudes that the cantilever deflection can be considered as a sinusoidal signal superimposed with a quasimonochromatic random signal originating from fluctuations. If one measures experimentally the standard deviation of the phase sigma(phi) of the signal with respect to a monochromatic reference signal, a universal relationship between the standard deviation of the phase sigma(phi) and the cantilever amplitude x(0) is found. The smaller the ratio of rms amplitude of the sinusoidal signal and the rms value of random signal is, the larger the phase fluctuations are. Phase fluctuations are of importance for measurements at small amplitudes, since they determine the limit of phase-sensitive measurements or the lateral imaging resolution in the so-called pendulum mode of AFM operation. In this paper we develop a heuristic model, which provides an analytical formula for the probability density of phase noise of a sinusoidal signal superimposed by a quasimonochromatic one with respect to a reference oscillator. The variance of the phase noise can be deduced from the distribution functions. The suggested model is verified experimentally and is compared with theoretical predictions. The amplitude-dependent phase fluctuations are a powerful tool to determine the spring constant of the beam or to calibrate its oscillation amplitude

    The noise of cantilevers

    No full text
    Micromechanical cantilevers used in atomic force microscopy are characterized by the geometry, the elastic modulus E and the quality factor Q. The sensor can be regarded as a rectangular bar clamped on one side and free on the other. In contrast to a simple harmonic oscillator a cantilever has different eigenfrequencies omega(n) and a mode-dependent spring constant D-n. Using the fluctuation-dissipation theorem we developed a simple model to calculate the thermal noise on each eigenmode for a free cantilever. With this result we can decide whether measuring on higher eigenmodes increases the force sensitivity

    Dynamics of damped cantilevers

    No full text
    In atomic force microscopy cantilevers are used to detect forces caused by interactions between probing tip and sample. The minimum forces which can be detected with commercial sensors are typically in the range of 10(-12) N. In the future, the aim will be to construct sensors with improved sensitivities to detect forces in the range of 10(-18) N. These sensors could be used for mass spectroscopy or magnetic resonance force microscopy. Achieving this goal requires smaller sensors and increased quality factor Q. In this article we describe a model to characterize the dynamics of cantilevers of each eigenmode. In contrast to previous models, the damping is treated rigorously in the calculations

    Low temperature ultrahigh vacuum noncontact atomic force microscope in the pendulum geometry

    No full text
    A noncontact atomic force microscope (nc-AFM) operating in magnetic fields up to +/- 7 T and liquid helium temperatures is presented in this article. In many common AFM experiments the cantilever is mounted parallel to the sample surface, while in our system the cantilever is assembled perpendicular to it; the so called pendulum mode of AFM operation. In this mode measurements employing very soft and, therefore, ultrasensitive cantilevers can be performed. The ultrahigh vacuum conditions allow to prepare and transfer cantilevers and samples in a requested manner avoiding surface contamination. We demonstrate the possibility of nc-AFM and Kelvin force probe microscopy imaging in the pendulum mode. Ultrasensitive experiments on small spin ensembles are presented as well. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551603
    corecore